Assessing the influence of secondary organic versus primary carbonaceous aerosols on long-range atmospheric polycyclic aromatic hydrocarbon transport.
نویسندگان
چکیده
We use the chemical transport model GEOS-Chem to evaluate the hypothesis that atmospheric polycyclic aromatic hydrocarbons (PAHs) are trapped in secondary organic aerosol (SOA) as it forms. We test the ability of three different partitioning configurations within the model to reproduce observed total concentrations in the midlatitudes and the Arctic as well as midlatitude gas-particle phase distributions. The configurations tested are (1) the GEOS-Chem default configuration, which uses instantaneous equilibrium partitioning to divide PAHs among the gas phase, a primary organic matter (OM) phase (absorptive), and a black carbon (BC) phase (adsorptive), (2) an SOA configuration in which PAHs are trapped in SOA when emitted and slowly evaporate from SOA thereafter, and (3) a configuration in which PAHs are trapped in primary OM/BC upon emission and subsequently slowly evaporate. We also test the influence of changing the fraction of PAHs available for particle-phase oxidation. Trapping PAHs in SOA particles upon formation and protecting against particle-phase oxidation (2) better simulates observed remote concentrations compared to our default configuration (1). However, simulating adsorptive partitioning to BC is required to reproduce the magnitude and seasonal pattern of gas-particle phase distributions. Thus, the last configuration (3) results in the best agreement between observed and simulated concentration/phase distribution data. The importance of BC rather than SOA to PAH transport is consistent with strong observational evidence that PAHs and BC are coemitted.
منابع مشابه
Characteristics and sources of carbonaceous aerosols from Shanghai, China
An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles) from Pudong (China) was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment) experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable carbon isotope...
متن کاملGas/Particle Partitioning of Semivolatile Organic Compounds To Model Inorganic, Organic, and Ambient Smog AerosolsGas/Particle Partitioning of Semivolatile Organic Compounds To Model Inorganic, Organic, and Ambient Smog Aerosols
Gas/particle (G/P) partitioning is an important process that affects the deposition, chemical reactions, long-range transport, and impact on human and ecosystem health of atmospheric semivolatile organic compounds (SOCs). Gas/ particle partitioning coefficients (Kp) were measured in an outdoor chamber for a group of polynuclear aromatic hydrocarbons (PAHs) and n-alkanes sorbing to three types o...
متن کاملPolycyclic Aromatic Hydrocarbons in Offshore Surface Sediments of the Northern Persian Gulf, Bushehr Province
Polycyclic aromatic hydrocarbons (PAHs) are classified as an important category of semi-volatile and persistent organic pollutants. They cause environmental problems due to their toxicity and accumulation in sediments. In this research, offshore sediments of 19 stations in 8 transects of the Persian Gulf in Bushehr province were studied to assess the sources of PAHs. The extraction and clean up...
متن کاملCarbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations
Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the co...
متن کاملHealth risk assessment of heavy metals, BTEX and polycyclic aromatic hydrocarbons (PAHs) in the workplace in a secondary oil re-refining factory
The present study aimed to evaluate the health risk of heavy metals (iron, zinc, cadmium, arsenic, nickel, lead, and mercury), benzene, toluene, ethylbenzene and xylene (BTEX), and polycyclic aromatic hydrocarbons (PAHs) in the workplace in a secondary oil re-refining factory. In this descriptive, cross-sectional study, samples were collected and analyzed using the NIOSH 1501 method at eight sa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 48 6 شماره
صفحات -
تاریخ انتشار 2014